BMEGSA Exchange: Maung Zaw Win

Graduate Research Assistant, Department of Biomedical Engineering

All dates for this event occur in the past.

James L035
James L035
460 W 10th Ave
Columbus, OH 43210
United States

"The Effect of Cellular Architecture on Functional and Mechanical Properties"

Recently, there has been a push towards clinical translation of biomechanical models of tissues by developing patient-specific models to predict disease outcomes.  To accomplish this, it is necessary to understand the functional and mechanical properties of all the tissue components, including individual cells. In vasculature, tissues and cells have different structures based on their functional role. The principle goal of this work is to determine how cellular architecture influences function and mechanical properties. To test our hypotheses, we have developed in vitro models to study the relationship between structure and function at the tissue and cellular scale. We have developed microfluidic capture array device (MCAD) technology (Fig. 1) to study cell structure and function in 2D engineered vascular smooth muscle tissue and have developed cellular micro-biaxial stretching (CμBS) microscopy (Fig. 2) to determine single cell mechanical properties. Using MCAD technology we are able to vary initial cell-cell contact during seeding to bias the cellular architecture in confluent vascular smooth muscle tissues. We found that tissues seeded using initially higher cell–cell contact conditions yielded tissues with a more elongated cellular architecture which lead to greater contractile function in engineered tissues. We have also developed CμBS microscopy to determine the anisotropic mechanical properties of individual cells, which we employ to determine the full mechanical description (given by the strain energy density function) of vascular smooth muscle cells. Using our method, we find that smooth muscle cells with native-like architectures are highly anisotropic and can be described by a general strain energy density function based on the actin cytoskeletal organization. Our results suggest that structural organization of cells in organs affect their functional and mechanical properties.